Membrane topology of human insig-1, a protein regulator of lipid synthesis.
نویسندگان
چکیده
Insig-1 is an intrinsic protein of the endoplasmic reticulum (ER) that regulates the proteolytic processing of membrane-bound sterol regulatory element-binding proteins (SREBPs), transcription factors that activate the synthesis of cholesterol and fatty acids in mammalian cells. When cellular levels of sterols rise, Insig-1 binds to the membranous sterol-sensing domain of SREBP cleavage-activating protein (SCAP), retaining the SCAP/SREBP complex in the ER and preventing it from moving to the Golgi for proteolytic processing. Under conditions of sterol excess, Insig-1 also binds to the ER enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, facilitating its ubiquitination and proteasomal degradation. Here, we use protease protection, glycosylation site mapping, and cysteine derivitization to define the topology of the 277-amino acid human Insig-1. The data indicate that short segments at the N and C termini of Insig-1 face the cytosol. Most of the protein is buried within the membrane, forming six transmembrane segments separated by five short luminal and cytosolic loops that range from approximately 5 to 16 amino acids. The membranous nature of Insig-1 is consistent with its sterol-dependent binding to hydrophobic sterol-sensing domains in SCAP and HMG CoA reductase.
منابع مشابه
Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells
In mammalian cells, levels of the integral membrane proteins 3-hydroxy-3-methylglutaryl-CoA reductase and Insig-1 are controlled by lipid-regulated endoplasmic reticulum-associated degradation (ERAD). The ERAD of reductase slows a rate-limiting step in cholesterol synthesis and results from sterol-induced binding of its membrane domain to Insig-1 and the highly related Insig-2 protein. Insig bi...
متن کاملIsolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2.
Insig-1 and Insig-2, a pair of endoplasmic reticulum (ER) membrane proteins, mediate feedback control of cholesterol synthesis through their sterol-dependent binding to the following two polytopic ER membrane proteins: sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Sterol-induced binding of Insigs to SCAP...
متن کاملAmplification of the gene for SCAP, coupled with Insig-1 deficiency, confers sterol resistance in mutant Chinese hamster ovary cells.
The endoplasmic reticulum membrane proteins Insig-1 and Insig-2 limit cholesterol synthesis, in part through their sterol-dependent binding to sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). This binding prevents proteolytic processing of SREBPs, membrane-bound transcription factors that enhance cholesterol synthesis. We report here the characterization of ...
متن کاملOverexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis.
In the current studies we generated transgenic mice that overexpress human Insig-1 in the liver under a constitutive promoter. In cultured cells Insig-1 and Insig-2 have been shown to block lipid synthesis in a cholesterol-dependent fashion by inhibiting proteolytic processing of sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors that activate lipid synthe...
متن کاملRegulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes.
Polytopic membrane proteins subjected to endoplasmic reticulum (ER)-associated degradation are extracted from membranes and targeted to proteasomes for destruction. The extraction mechanism is poorly understood. One polytopic ER protein subjected to ER-associated degradation is Insig-1, a negative regulator of cholesterol synthesis. Insig-1 is rapidly degraded by proteasomes when cells are depl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 9 شماره
صفحات -
تاریخ انتشار 2004